Electrocatalytic Reduction of Sulfuric Acid to Hydrogen Sulfide by a Trinuclear Niobium Cluster

Elizabeth A. Paul, Tom H. Batten, Michael A. May, William R. Sayers, Paul E. Shelton, Takehiro Kojima, and Vladimir Katovic'

Department of Chemistry, Wright State University, Dayton, Ohio 45435 *Received July 13, 1993*

It is thought that metal cluster compounds hold great potential as catalysts for the multiple-electron reduction of small molecules, since they contain several metal atoms in close proximity, available for multiside bonding.^{1,2} However, very few examples of catalysis by metal clusters have been documented so far.^{3,4} In the course of the electrochemical investigation of $Nb(5+)$ in H_2SO_4 and the mechanism for the formation of the trinuclear cluster anion $[Nb₃O₂(SO₄)₆(H₂O)₃]⁵⁻$, we found that the niobium cluster electrocatalyzes the reduction of 12 M H2SO4 to H2S **on** a Hg electrode at room temperature at -1.2 V vs Hg/Hg₂SO₄ (-0.6) V vs NHE). The reduction of sulfate to sulfide is an important step in the sulfur biological cycle.^{5,6} In plants and some bacteria, the reduction is achieved through several intermediate steps, each requiring a different enzyme. Concentrated H_2SO_4 can be reduced by a variety of metals at elevated temperatures (>230 "C) to H2 and **SO2.'** With **Zn** and Cd, some H2S was also formed. It was also previously reported that solid KI crystals in the presence of I_2 can reduce 9 M H₂SO₄ at 36 °C to SO₂, H₂S, and elemental S depending upon the I^{-}/I_{2} concentrations.^{8,9} This latter reaction, however, required solid KI and was not established to be catalytic.

The cluster anion $[Nb_3O_2(SO_4)_6(H_2O)_3]^{5-}$ has been assigned^{10,11} to the M_3X_{17} structural type (see Figure 1). It is composed of a discrete triangular Nb₃ unit with oxygen atoms above and below the triangular plane. The SO₄²⁻ ligands bridge each side of the triangle and three H_2O ligands occupy the equatorial positions. The formal oxidation state of Nb is 3.67+; thus 4 electrons occupy the metal-bonding molecular orbitals, giving a Nb-Nb bond order of **2/3.**

A cyclic voltammogram of $K_4H_5O_2[Nb_3O_2(SO_4)_6$ - $(H_2O)_3$.5H₂O in 9 M H₂SO₄ at 0 °C using a hanging mercury drop electrode (HMDE) is shown in Figure 2A.12 It displays a reversible reduction peak at $E_{\text{pc}} = -1.3$ V vs Hg₂SO₄/Hg and a large irreversible oxidation peak at $E_{pa} = -0.45$ V. On the basis of the criteria of cyclic voltammetry (CV) $(\Delta E_p = 60 \text{ mV}, i_{pc}/i_{pa})$ $= 1$) and coulometry ($n_{app} = 1$), the reduction peak corresponds to a 1-electron electrochemically reversible process: $[Nb₃O₂$ potential reduction of the red anion $[Nb_3O_2(SO_4)_6(H_2O)_3]^{5-}$ at $E = -1.4$ V yields a green solution which contains the Nb(3.33+) cluster $[Nb_3O_2(SO_4)_6(H_2O)_3]^{6-}$. A cyclic voltammogram of the green reduced solution is similar to that obtained before electrolysis, except that the peak at $E_p = -1.3$ V becomes anodic $(SO_4)_6(H_2O)_3]^{5-} + e \rightarrow [Nb_3O_2(SO_4)_6(H_2O)_3]^{6-}$. Constant-

- **(1)** Cotton, F. A.; Walton, R. A. *Multiple Bonds between Metal Atoms;* Wiley: New York, **1982.**
- **(2)** Muetterties, E. L. *Science* **1972, 196, 893.**
- **(3)** Suss-Fink, G. *Nachr. Chem. Tech. Lab.* **1988, 36,** 11 10. **(4)** Shriver, D. F.; Kaesz, H. D.; Adam, R. **D.** *The Chemistry of Metal*
- *Cluster Compounds;* VCH Publishers Inc.: New York, **1990.**
- **(5)** Postage, J. R. **In** *Inorganic Sulfur Chemistry;* Nickless, G., Ed.; Elsevier: New York, **1968;** Chapter **8,** pp **259-279.**
- **(6)** Kline, M. A.; Barley, M. H.; Meyer, T. J. *Inorg. Chem.* **1987,26,2196. (7)** *Gmelins Handbuch der Anorganische Chemie;* Verlag Chemie: Wein-
- heim, Germany, **1960;** Part **B2,** p **769.**
- **(8)** Proskouriakoff, K. *J. Phys. Chem.* **1929, 33, 717. (9)** Bush, F. *J. Phys. Chem.* **1929, 33, 613.**
- (IO) Bino, A. *Inorg. Chem.* **1982, 21, 1917.**
- (11) Muller, **A.** M.; Jates, R.; Cotton, F. A. *Angew Chem., In!. Ed. Engl.* **1980, 19, 875.**
- (12) Electrochemical measurements were performed in an H-type cell with a hanging mercury drop working electrode (HMDE), a platinum-gauze auxiliary electrode, and a Hg₂SO₄/Hg (saturated **K₂SO₄)** reference electrode. The constant-potential electrolyses were done using a Hgpool electrode. A spectroscopic quartz cuvette (attached on the side of the H-type cell) was used for the spectroelectrochemical measurements during the coulometry experiments.

Figure 1. Structure¹⁰ of the cluster anion $[Nb_3O_2(SO_4)_6(H_2O)_3]^{5}$.

(Figure 2A, dotted line). The reversibility of this electrochemical reduction is indicative of the similar geometry of the [Nbj- $O_2(SO_4)_6(H_2O)_3$ ⁵⁻ and $[Nb_3O_2(SO_4)_6(H_2O)_3]$ ⁶⁻ anions. The large oxidation peak at $E_{pa} = -0.45$ V in Figure 2A corresponds to a 4-electron oxidation of $[Nb_3O_2(SO_4)_6(H_2O)_3]^{5-}$ to a Nb-**(5+)** species, as confirmed by coulometry and CV of the solution obtained after electrolysis.

The Nb(5+) species¹³ in 12 M H_2SO_4 gives two reduction peaks at $E_{\infty} = -1.15$ and -1.30 V vs the Hg/Hg₂SO₄ electrode (peaks 1 and 2 in Figure 2B). **On** a reverse scan, in addition to the two coupled anodic peaks (peaks 3 and **4)** of the two reduction peaks, three new anodic peaks at $E_{pa} = -0.90, -0.82,$ and -0.45 V were observed (peaks **5-7). On** the basis of the data obtained from CV ($\Delta E_p = 150$ mV, $i_{pc}/i_{pa} > 1$), coulometry ($n_{app} = 1.35$), and DC polarography $(\log[(I_L - I)/I]$ vs *E* gave a slope of 47 mV), it was concluded that the first reduction peak involves a quasi-reversible 2-electron-transfer process, followed by chemical step(s). Constant-potential electrolysis at 0° C, at a potential slightly more negative than that of the first reduction peak (-1.22) V), consumed 1.35 mol of electrons/mol of Nb and produced a red solution of $[Nb_3O_2(SO_4)_6(H_2O)_3]^{5}$, whose identity was confirmed by spectroscopy and cyclicvoltammetry. The following reaction sequence for the conversion of $Nb(5+)$ to $[Nb₃-]$ $O_2(SO_4)_{6}(H_2O)_{3}$ ⁵⁻ is proposed:

$$
Nb(5+) + 2e → Nb(3+) → 1/2 "Nb26+n
$$

$$
Nb26+ + Nb(5+) → [Nb3O2(SO4)6(H2O)3]5-
$$

$$
[Nb_{3}O_{2}(SO_{4})_{6}(H_{2}O)_{3}]^{5-}+e\rightleftarrows Nb_{3}O_{2}(SO_{4})_{6}(H_{2}O)_{3}]^{6-}
$$

After the initial 2-electron reduction of Nb(5+), the product,

^(1 3) The Nb(5+) solution in **12** M **H2S04** was prepared by dissolving freshly precipitated niobium(V) hydroxide in 12 M H₂SO₄ with heating. The nature of the Nb(5+) species in 12 M H₂SO₄ is not known with certainty. Previous electrochemical studies of the dc polarographic wave of $Nb(5+)$ in 12 $M H_2SO_4$ at $E_{1/2} = -1.1$ V indicate that $Nb(5+)$ in 12 $M H₂SO₄$ is present as a monomer.¹⁶

Figure 2. Cyclic voltammograms obtained in H_2SO_4 using HMDE: (A) $K_4H_5O_2[Nb_3O_2(SO_4)_6(H_2O)_3]\cdot 5H_2O$ in 9 M H_2SO_4 (5.0 \times 10⁻³ M) **(dotted line: voltammogram obtained after electrolysis at -1.4 V); (B)** Nb(5+) in 12 M $H_2SO_4(3.6 \times 10^{-3} \text{ M})$ before electrolysis; (C) $Nb(5+)$ in 12 M H₂SO₄ after electrolysis at -1.22 V at 0 °C; (D) same as in part C after the temperature was raised to 24 °C. Asterisks indicate the peaks **due to the presence of** H2S. **Scan E is the background voltammogram obtainedin 12M** H2S04at24°C. **Scanrate= 50mV/s.Verticalarrows indicate the electrolysis potentials.**

Nb(3+), is not chemically stable and produces an intermediate species, probably a soluble $Nb₂⁶⁺$ dimer, which reacts with the starting material Nb(5+) and produces a $[Nb_3O_2(SO_4)_6(H_2O)_3]^5$ cluster anion. Further reduction at $E = -1.40$ V yields a Nb-(3.33+) cluster, $[Nb₃O₂(SO₄)₆(H₂O)₃]⁶$, which is stable in solution at 0° C.

We have observed that if the cluster anion $[Nb₃O₂]$ $(SO₄)₆(H₂O)₃]$ ⁵⁻ is generated by the reduction of Nb(5+) at -1.22 V at 0 °C and then the temperature of the solution is increased to 24 °C, the generation of H_2S commences.¹⁴ It is important to notice that no reduction of $12 M H_2SO_4$ takes place at this potential in the absence of $[Nb_3O_2(SO_4)_6(H_2O)_3]^{5-}$ (see background current in Figure 2E). The electrochemical reduction of Nb(5+) to $[Nb_3O_2(SO_4)_6(H_2O)_3]$ ⁵⁻ at 0 °C is quantitative (yield *>98%),* and the reduction current decays to its background value. After the temperature increased to 24 °C , the reduction current increases from the background value to two-thirds of the initial value and remains constant, with thecontinuous generation of H_2S . The current increases even more if the potential is increased to -1.26 V, where the formation of $[Nb_3O_2]$ - $(SO₄)(H₂O)₃$ ⁶⁻ begins.¹⁵ The turnover number based on the mol of H_2S/mol of Nb_3 is 31.

Cyclic voltammograms of $Nb(5+)$ in 12 M H_2SO_4 obtained before electrolysis at 0 °C, after electrolysis at -1.22 V at 0 °C, and after raising the temperature of the electrolyzed solution to 24 °C are shown respectively in Figure 2B-D. After electrolysis at -1.22 V at 0 °C, the first peak almost completely disappears, while at the same time the large anodic peak at -0.45 V increases dramatically. Electronic spectra collected in situ during electrolysis also confirm the formation of the $[Nb_3O_2(SO_4)_6(H_2O)_3]^5$ anion. After the temperature is increased to 24 °C , the cyclic voltammogram, in addition to the peaks characteristic of the presence of H2S (designated by asterisks in Figure 2D), contains the peak at $E = -1.15$ V characteristic of the Nb(5+) species. These results indicate that the reduction of H_2SO_4 first involves the oxidation of the cluster $[Nb_3O_2(SO_4)_6(H_2O)_3]^{5-}$ to Nb(5+). Continued electrolysis at $E = -1.22$ V then regenerates $[Nb₃O₂(SO₄)₆(H₂O)₃]$ ⁵⁻ and makes the whole process electrocatalytic.

The question arises, as in the previous examples of catalysis by metal clusters, 3 concerning whether it is the cluster species itself that is doing the catalysis or rather a cluster fragment or monomeric intermediate. For that reason, we performed an experiment in which $Nb(5+)$ was reduced at -1.22 V at 24 °C, without first generating $[Nb_3O_2(SO_4)_6(H_2O)_3]^{5-}$ at 0 °C. H_2S was not detected at the beginning of the electrolysis, but as the electrolysis proceeded and the amount of $[Nb_3O_2(SO_4)_6(H_2O)_3]^5$ increased, the generation of H_2S commenced. This indicates that it is not $Nb(3+)$ or some other intermediate involved in the catalytic reduction, since their concentrations are highest at the surface of the electrode at the beginning of the electrolysis (when the concentration of $Nb(5+)$ is also highest). In a separate experiment, we found that $12 M H_2SO_4$ could also be catalytically reduced to H2S by the *chemically* synthesized [Nb3- **02(S04)6(H20)3]5-cluSter** anion. Soluble Nb(5+) was reduced by **Zn** metal in 12 **M** H2SO4 to a red solution containing the **[Nb302(S04)6(H20)3]5-anion,** and H2S wasgenerated. Further reduction with zinc produced a green solution of the $[Nb₃ O_2(SO_4)_6(H_2O)_3$ ⁶⁻ anion, with the continued evolution of H₂S. No H2S gas was detected in a control experiment in which **Zn** metal was reacted with 12 M H_2SO_4 .

We do not presently know much about the mechanism of this catalytic reduction of H_2SO_4 to H_2S . The overall reduction process requires 8 electrons and therefore involves a rather complicated reaction mechanism. Since the $[Nb_3O_2 (SO₄)(H₂O)₃$ ⁵⁻ cluster has only 4 electrons available for reduction, the overall reduction process probably involves the formation of partially reduced sulfate, which is further reduced to H_2S .

It is interesting to note that $[Nb_3O_2(SO_4)_6(H_2O)_3]^{5-}$ is the only example of a metal cluster with sulfate groups bridging two metal atoms. It is possible that this geometry facilitates the transfer of electrons from the metal orbitals in Nb_3 units to SO_4^2 . We are not aware of any previous example in which an "electronpoor" type cluster was involved in catalytic activity.^{3,4}

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society. Support from NSF Grant No. PRM-8111214 for the purchase of the Varian 2300 UV/vis/near-IR spectrophotometer is also gratefully acknowledged.

~~ ~ ~~~ ~

⁽¹⁴⁾ During the formation of HzS, the electrolyzed solution was purged with N_2 , and H_2S was absorbed in a $Cu(ClO₄)_2$ solution. The amount of H_2S **was determined gravimetrically by weighing CuS.**

⁽¹⁵⁾ In a typical experiment, 43 mL of a 3.6×10^{-3} M solution of Nb(5+) $(0.155 \text{ mmol of Nb})$ electrolyzed on a **Hg-pool** cathode (area $\sim 15 \text{ cm}^2$) $(0.155 \text{ mmol of Nb})$ electrolyzed on a Hg-pool cathode (area $\sim 15 \text{ cm}^2$) at -1.22 V at 0 °C consumed 19.2 C, during which the current decreased **from 8 to 0.1 mA. After the temperature was increased to 24 OC, the current increased to 5 mA and remained at that value for several days,**

during which time 1.6 mmol of H₂S was recovered.
(16) Krylov, E. I.; Kolebaleva, V. S.; Samarni, V. A. *Dokl. Akad. Nauk SSSR* **1954,** *158,* **593.**